14,259 research outputs found

    Bond-forming reactions of N22+ with C2H4, C2H6, C3H4 and C3H6

    Get PDF
    Mass spectrometry, coupled with position-sensitive coincidence detection, has been used to investigate the reactions of N22+ with various small hydrocarbon molecules (C2H4, C2H6, C3H4, c-C3H6 and n-C3H6) at collision energies below 10 eV in the centre-of-mass frame. The reactivity, in each case, is dominated by electron transfer. However, in each collision system we also clearly identify products formed following the creation of new chemical bonds. These bond-forming reactions comprise two distinct classes: (i) hydride transfer reactions which initially form NnH+ (n = 1, 2) and (ii) N+ transfer reactions which form monocationic products with Csingle bondN bonds. These bond-forming reactions make a small (5–10%), but significant, contribution to the overall product ion yield in each collision system. The temporal and positional data recorded by our coincidence detection technique are used to construct scattering diagrams which reveal the mechanisms of the bond-forming reactions. For the hydride transfer process, the scattering diagrams reveal that H− is directly transferred from the hydrocarbon to N22+ at significant interspecies separations. For the hydride transfer reactions with C2H4, C2H6 and C3H4, we observe fragmentation of the nascent N2H+* to form NH+ + N. The N+ transfer reaction also proceeds by a direct mechanism: a single step involving N+/H exchange results in the formation of a singly-charged organic species containing a Csingle bondN bond which is detected in coincidence with H+. The two general classes of bond-forming reactivity we observe in the reactions of N22+ with organic molecules may be relevant in the chemistry of energised environments rich in molecular nitrogen and hydrocarbon species, such as the atmosphere of Titan

    Salient object subitizing

    Full text link
    We study the problem of salient object subitizing, i.e. predicting the existence and the number of salient objects in an image using holistic cues. This task is inspired by the ability of people to quickly and accurately identify the number of items within the subitizing range (1–4). To this end, we present a salient object subitizing image dataset of about 14 K everyday images which are annotated using an online crowdsourcing marketplace. We show that using an end-to-end trained convolutional neural network (CNN) model, we achieve prediction accuracy comparable to human performance in identifying images with zero or one salient object. For images with multiple salient objects, our model also provides significantly better than chance performance without requiring any localization process. Moreover, we propose a method to improve the training of the CNN subitizing model by leveraging synthetic images. In experiments, we demonstrate the accuracy and generalizability of our CNN subitizing model and its applications in salient object detection and image retrieval.This research was supported in part by US NSF Grants 0910908 and 1029430, and gifts from Adobe and NVIDIA. (0910908 - US NSF; 1029430 - US NSF)https://arxiv.org/abs/1607.07525https://arxiv.org/pdf/1607.07525.pdfAccepted manuscrip

    Sparse Bayesian mass mapping with uncertainties: peak statistics and feature locations

    Get PDF
    Weak lensing convergence maps – upon which higher order statistics can be calculated – can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriously) leading to substantial uncertainty on the recovered convergence maps. In this paper we propose novel methods for quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty in the cumulative peak statistic – the peak count as a function of signal-to-noise ratio (SNR). We adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work, which provides robust reconstructions and principled statistical interpretation of reconstructed convergence maps without the need to assume or impose Gaussianity. We demonstrate our uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard V-1.6 (large-scale structure) N-body simulations. For the first time, this methodology allows one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic at well-defined confidence levels

    Sparse Bayesian mass-mapping with uncertainties: Full sky observations on the celestial sphere

    Get PDF
    To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the flat-sky approximation has been sufficiently satisfied. However, with Stage IV surveys (e.g. LSST and Euclid) imminent, extending mass-mapping techniques to the sphere is a fundamental necessity. As such, we extend the sparse hierarchical Bayesian massmapping formalism presented in previous work to the spherical sky. For the first time, this allows us to construct maximum a posteriori spherical weak lensing dark-matter mass-maps, with principled Bayesian uncertainties, without imposing or assuming Gaussianty. We solve the spherical mass-mapping inverse problem in the analysis setting adopting a sparsity promoting Laplacetype wavelet prior, though this theoretical framework supports all log-concave posteriors. Our spherical mass-mapping formalism facilitates principled statistical interpretation of reconstructions. We apply our framework to convergence reconstruction on high resolution N-body simulations with pseudo-Euclid masking, polluted with a variety of realistic noise levels, and show a significant increase in reconstruction fidelity compared to standard approaches. Furthermore, we perform the largest joint reconstruction to date of the majority of publicly available shear observational data sets (combining DESY1, KiDS450, and CFHTLens) and find that our formalism recovers a convergence map with significantly enhanced small-scale detail. Within our Bayesian framework we validate, in a statistically rigorous manner, the community’s intuition regarding the need to smooth spherical Kaiser-Squires estimates to provide physically meaningful convergence maps. Such approaches cannot reveal the small-scale physical structures that we recover within our framework

    Organic Waste Management at WPI

    Get PDF
    Waste is a growing environmental problem worldwide. A typical wasted management process is not conscious of the different types of materials it receives - a mix of organic and inorganic waste. The objective of this research project is to create and efficient organic waste management plan at WPI which will reuse the organic waste thrown away to produce methane and mulch. Our plan proposes anaerobic digestion of food and yard waste to produce methane for power production and rich soil and mulch for campus beds. To get data on the waste that could potentially be reused, we contacted Morgan Commons personnel, the GPS: Feed the World, WPI Grounds Services director, Greek organizations on campus and nearby restaurants such as the Boynton and the Sole Proprietor. For digester and reactor design, we carried out an intense literature survey. Our findings focused on developing a reactor that could be feasibly implemented at WPI(tackling issues such as size, space and cost). In addition we developed an effective mulch production system by recycling leaves. The proposed plan is easily implementable with a payback in 3-4 years. WPI\u27s sustainability initiative can be furthered by implementation of this proposal.https://digitalcommons.wpi.edu/gps-posters/1349/thumbnail.jp

    ‘It’s too late’. Is it really? Considerations for amblyopia treatment in older children

    Get PDF
    In recent years, media coverage has demonstrated instances in which families of children aged 7 and older, newly diagnosed with strabismic and/or anisometropic amblyopia through community eyecare services, were told it was ‘too late’ for their child to effectively respond to conventional amblyopia treatment (occlusion or atropine penalisation). Formal guidance pertaining to binocular vision anomalies from eyecare professional bodies does not specifically make reference to a child’s age, beyond stating the importance of early diagnosis and treatment of strabismus/amblyopia. However, there have been many changes in the way we view the recovery period for amblyopia, and it is well demonstrated both within literature and clinical practice that conventional treatment can improve amblyopic eye visual acuity in children beyond the age of 7 years. The occurrence of these media described cases within the community eyecare sphere would suggest it is worthwhile revisiting the literature on the subject of amblyopia treatment in older children (aged 7+ years), to address misconceptions and place in the spotlight current considerations facing clinicians when treating newly diagnosed amblyopia within this age group. This perspective review provides an evidence-based update covering the various considerations associated with treatment of amblyopia in older children, along with recent amblyopia treatment advances that could have an impact on treatment prospects for this patient group. Considerations include the risks, benefits and efficacy of treating newly diagnosed amblyopia in older children, monitoring density of suppression to mitigate intractable diplopia risk, and recent findings regarding binocular treatments for amblyopia
    corecore